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COMPUTATION OF LAMINAR VISCOUS FLUID FLOWS IN ARBITRARY 

AXISYMMERIC CHANNELS 

V. E. Karyakin, Yu. E. Karyakin, 
and A. Ya. Nesterov 

UDC 532.516 

h finite-difference method is proposed for computing flows in axisymmetric chan- 
nels of arbitrary configuration in the presence of a swirling stream. 

One of the widespread causes of fluid flows in modern power plant elements is axisym- 
metric motion. It is characteristic for diffuser and expander type channels, axiradial tur- 
bine channels, different kinds of branchpieces and is accompanied sufficiently often by a 
swirling stream that raises the intensity of the heat and mass transfer processes that occur. 

Laminar fluid flow in the initial section of a straight annular channel is studied in 
the presence of a swirling stream in [i], while an annular channel with arbitrary generators 
is examined in [2]. The formation of stream separation zones near the channel walls has been 
established. 

Swirling fluid flows in a straight cylindrical pipe without a central body have been 
examined in [3, 4]. A reversible flow domain with several recirculation centers occurs on 
the pipe axis for high values of the rotation parameter. 

A computation of axiradial channels of arbitrary configuration in the presence of a swirl- 
ing stream is performed in [5]. The influence of the Reynolds number and the rotation para- 
meter on the fundamental stream characteristics has been investigated. An analogous problem 
is solved in [6] ~without taking swirling into account. 

The stream function, vorticity, and the circumferential velocity are the main dependent 
variables in [1-6]. However, solution of the Navier-Stokes equations is realized more and 
more often with respect to the so-called physical variables (the velocity and pressure compo- 
nents). The mode of writing the Navier-Stokes equations that characterize fluid flow in arbi- 
trary axisyrametric channels is set down below and a difference method is proposed for the 
solution of such problems. 

As is known [8], the nonstationary motion of an incompressible viscous fluid in an ar- 
bitrary curvilinear nonorthogonal coordinate system x I, x =, x S is described by the following 

Oo~ .~ O (;k~) = Op 1 0 ( 
at ax k ax' -t- Re ~x k . ~ '  . . . .  Ox ~ ) ,  (1) 

O~a = O, i ,  k, I = 1, 2 ,  3 .  ( 2 )  
Oxk 

equations 

Here and henceforth, subscripts repeated twice assume s~ation over all their allowable 
values. The velocity vector components in the x I, x 2, x 3 coordinate system are related to 
the Cartesian components by known tensory analysis relationships (~ = i, 2, 3): 

Ox i Ox ~ = v ~ Oy~ , 
= , d = u~  u~  = v~ . . . . . . . . . .  ( 3 )  

vi u~ Ox ~ " Og~ O x i 

while the ~uantities vi, ~i, ~k~ are determined by using matrices of the derivatives 3xi/3y~ 
and 3y~/Sx I fixed at the point of differentiation Q: 
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F i g .  1.  M e r i d i a n  s e c t i o n  o f  an  a x i s y m m e t r i c  
c h a n n e l  

Q, =U~ , ~ ....... . 
\ oy= :,~ ov~ \ oy= :Q (4) 

L e t  u s  now c o n s i d e r  t h e  c a s e  o f  " a x i s y r m e t r i c  f l u i d  m o t i o n  i n  a c h a n n e l  i n  t h e  p r e : ; e n c e  
of a swirling stream. Let the Oy I axis be the channel axis of symmetry (Fig. i). Let us 
introduce the meridian plane H making the arbitrary angle ~ with the plane Oyly 2. Let us 
assume that the meridian section of an axisymmetric channel is a quadrangular figure ABCD 
with arbitrary curvilinear boundaries. Let us select a curvilinear system (x i, x2), nonortho- 
gonal in the general case, in the plane H whose coordinate lines agree with the boundaries 
of the domain under investigation. The quadrangular figure ABCD is converted into a canoni- 
cal figure in this system, the rectangle (0 _< x I 5 a, 0 _< x 2 5 b). We select the angle of 
rotation ~ of the plane H around the axis Oy~ as coordinate x 3, i.e., ~. 

The Cartesian coordinates of any point of the plane N are determined by the relation- 
ships 

y~ = z ,  y~ = r c o s x  ~, y~ = r s i n x  ~, ( 5 )  

where r = r(x • x2), z = z(x ~, x =) for an axisymmetric channel. It follows from (5) that 
for x ~ = 0 

O: 

and also 

where 

Oy__A._~ , _ Oz Oy_.L = O z Oy__~,~ Or Oy2 Or ( 6 )  

Ox ~ Ox ~ ~' Ox ~ Ox z " Ox ~ Ox ~ ' Ox ~ Ox ~ ' 

ay~ ay~ ay~ @3 o, @3 
Ox 3 Ox ~ Ox ~ Ox 2 Ox 3 

Assuming a coordinate transformation inverse to (5) to exist, we can obtain for x 3 = 

Ox 1 1 Or Ox ~ 1 @z 

Oyl g Ox 2 ' OW g Ox 2" , 

Ox ~ 1 Or Ox 2 l Oz 

Oyl g Ox ~ ' Oy~ g Ox ~ ' 

Ox 1 Ox~ Ox ~ Ox a Ox ~ 1 

Oy~ Oy~ @1 @2 Oy~ r 

(7) 

O : Ox 1 ) Ox~ a / ax = ~ Ox 2 o : o.~ = 0 ,  ( 8 )  

az Or Oz or  

g = - O x  ~ Ox 2 - -  Ox---- ~ Ox ~ 

Now, let us consider the kinematic characteristics of the axisymmetric motion. Let U, 
V, W be axial, radial, and circumferential velocities, independent of x 3, in the cylindrical 
coordinate system. Then the dependence of the Cartesian velocity components on the cool'- 
dinate x 3 is determined by the formulas 

u1 = U, u2 = V cos xS - -  W sin xL  u3 = Vsinx~ + W c o s x  3. (9) 
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Using (3), (6), (7) and (9), we obtain expressions for the functions vi and ~i: 

vx = U Oz Ox ~ + ( V  cos x 8 - -  W sin x 8) Or___ 
a x  1 , 

v ~ = U .  az  + ( Y c o s x  a - I g s i n x 9  Or 
Ox z a x  ~ 

(V sin x 3 + W cos x 3) r~ U a ~--- 

(zo) 

~ [ ar az ] v' =-~-~u a x  z ( V c o s x  3 - W s i n x  8 ) ~  , 

~:__I [_ U a!_ --~-Tx~ ] g L Ox ~ - k ( V c o s x  3 - W s i n x  3) Oz , 

~ = _1 (V sin x~ + W cos xS. 
F 

(11) 

The quantities r, g ,  3r/Sx z, 3r/3x 2, 8z/Sx I and 3z/Sx 2 in (i0) and (II) should be considered 
fixed at the point of differentiation Q located in the plane x 3 = 0. 

As follows from (i0) and (ii), the values of vi and ~i depend on the angular coordinate 
x 3. consequently, to obtain the Navier-Stokes equations describing the axisymmetric motion 
case, it is necessary'to expand analytically the derivatives with respect to the coordinate 
x 3 that enter into (i) and (2). By virtue of axial symmetry it is sufficient to execute this 
procedure in some one meridian plane, the plane x 3 = 0, say. 

Let us first examine the expression in the left side of the continuity equation (2) and 
let us extract the derivative with respect to the coordinate x ~ 

Ox k - -  Ox ~ % Ox 3 , k = l ,  2, 3; s = l ,  2. 

T a k i n g  a c c o u n t  o f  ( 3 ) ,  ( 6 ) ,  and  ( 1 1 ) ,  we w i l l  h a v e  f o r  x 3 = 0 

In this case 

where 

Ov 3 V _ v ~ Or ( 1 2 )  
Ox ~ - -  r r Ox ~ , s .... 1, 2. 

Ov k 1 O (rvs), k 1, 2, 3; s 1, 2. 
c)x h r Ox ~ 

NOw, let u s  consider the convective terms of the momentum equations (I) 

Ox k - -  Ox ~ ~-v~-Off -  + v3 k = 1, 2, 3; s = 1, 2. 
O x  z , 

T a k i n g  ( 1 0 ) - ( 1 2 )  i n t o  a c c o u n t  i n t o  a c c o u n t ,  we w i l l  h a v e  f o r  x 3 = 0 ( s  = 1,  2)  

Ov 3 1 Or Ovi 
= - -  U i U  s - U 3 - -  K D  

vi ~ r OX s ' Ox 3 

In this case 

(13) 

W z Or W z Or 
K1 .... ; K,.  ..... ; K.~ : V W .  ( 1 4 )  

r c)x ~ r d x  2 

0 
(roSv~)-l-Ki, k : 1, 2, 3; s = 1, 2. @x s 8xa r (15) 

Finally, the diffusion terms of .the Navier-Stokes equations can be reduced to the fol- 
lowing form by using (6)-(8): 

0 (%z Or3~ "~ 1 0 1' 0v, ~+D~,  (16) 
/ 

k,  l = l ,  2, 3; s , m = l ,  2, 
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Fig. 2. Stream lines in an axiradial diffuser, 
Re = I000. 

here 
V Or V Or W 

D~= r 2 ax I D~= -- Ds (17) 
r ~ ax ~ r 

Using the expressions (13)-(17) obtained, we convert the system of Navier-Stokes equa- 
tions (I) and (2) to universal form describing the motion of an incompressible viscous fluid 
in both the plane and axisymmetric cases in the presence of stream swirling 

av, .. "!-, I a (ro~,;,~) = ap 1 a ( rO~,~ a~, 1 
-"O't r ~ ax ~ ax ~ + Rer o ax s --a~m-x~ / + r ( 1 8 )  

t a ( r ~ S ) =  O, s, m = i,  2, ( 1 9 )  
r ~ ax  s 

where 

I1= --1 ( W2__ V Or 
r Re r  ax ~ ' 

12 1 (W~__ V ) O r  I3 W (rV q- I ~ 

When considering plane channels, we should set o = 0, i = i, 2 in (18) and (19). In 
the case of an axisymmetric flow with a swirling stream a = i, i = I, 2, 3 and 8p/Sx 3 = 0. 

The system of equations (18) and (19) is closed by the following boundary conditions. 
All velocity vector components v I = vz0(x2), v 2 = v20(x=), vs = v30(x 2) are given at the en- 
trance to the channel (x I = 0). The usual conditions of adhesion and non-penetration v I = 
v 2 = v 3 = 0 are posed on the solid boundaries (x 2 = 0 and x = = b). Finally, the boundary 
conditions at the exit from the channel (x I = a) are written in the form [8] 

0 to{ c0z 21 (or or vl ~ + --v= + 
ax 1 g \ Ox~)  J ax ~ Ox= ( 2 0 )  

Oz az ) } = 0 ,  Or2 a w . . . .  O. 
+ ax ~ Ox z Ox ~ = ax ~ 

The f i r s t  c o n d i t i o n  i n  ( 2 0 )  d e n o t e s  c o n s t a n c y  o f  t h e  f l u i d  mass  f l o w  r a t e  t h r o u g h  t h e  
s i d e  f a c e s  dx 2 • dx 3 o f  t h e  v o l u m e  e l e m e n t  dx 1 • dx 2 x dx 3 a d j o i n i n g  t h e  c h a n n e l  o u t p u t  s e c -  
t i o n .  T h e s e  c o n d i t i o n s  i n  a C a r t e s i a n  c o o r d i n a t e  s y s t e m  go o v e r  i n t o  t h e  u s u a l  " s o f t "  c o n d i -  
t i o n s .  As f o l l o w s  f r o m  ( 1 8 ) ,  when s o l v i n g  t h e  p r o b l e m  i n  p h y s i c a l  v a r i a b l e s  t h e  p r e s s u r e  
p i s  d e t e r m i n e d  t o  t h e  a c c u r a c y  o f  an  a r b i t r a r y  c o n s t a n t .  T h i s  c o n s t a n t  i s  f o u n d  f r o m  t h e  
c o n d i t i o n  p = 0 a t  t h e  p o i n t  x z = x 2 = O. 

The procedure of generating a difference mesh to be used to find the relation between 
coordinates of points of the physical and canonical domains, i.e., r = r(x l, x2), z = z(x l, 
x2), preceded the direct numerical modeling of viscous fluid motion on the basis of (18) and 
(19). The algorithm for construction of the mesh is based on using a generating system of 
elliptical equations [9]. Upon placement of the nodes along the solid boundaries, their con- 
densation in domains of positive curvature of the contour is assured, where the appearance 
of stream separations is most probable. The functions regulating the transverse condensation 
of the nodes are calculated with the exponential behavior taken into account near the walls. 
The procedure assures construction of a mesh sufficiently close to an orthogonal one. 

37 



"I 
F 

I// 

0 20 ~0 
I 

6O Z 

Fig. 3. Circumferential velocity isolines in an 
axiradial diffuser: i)~ W = 0.i, 2) 0.2, 3) 0.3, 
4) 0.4, 5) 0.5, Re = 1000. 
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Fig. 4. Stream lines in a truncated axiradial dif- 
fuser with nonuniform velocity profile at the en- 
trance and a swirling stream, Re = i000. 

We will determine the desired mesh functions p and v s at the center of each mesh cell 
and the functions v I and v 2 at the center of its faces exactly as is customary in the method 
of markers and cells. We denote the approximation of the derivative 8/SxS by cen- 
tral differences by D S and the approximation of the convective terms 8(r~ in (18) 
by the scheme of donor cells by D~(r~ s, vi)" 

We use the following multistep implicit difference scheme to solve the system of equa- 
tions (18) and (19) (the superscript n is the number of the time layer) 

' v  ~+~ v'~)/At + -~ * " v ~ + ~  t 3 - -  r Ds (r ~  s", a 1= 

----- (Re r ~ )-~Ds (r ~ g'mDm (v~ +1)) q- al'~ +1, ( 21 ) 

6v~+l/3/h t + r-OD~ (rO v~,  ~ n v: ) = -- Dj (pn) + 

-5 (Re ra)-~m, (r~ gS'nm,~ (b~')) --}- ~i~,+1, 
(22)  

o~ ( r ~  ~ (v7 + ~v7 + ' ~  - -  m D j  (Sp))) = 0, (23)  

(Sv'] +2/3 - -  8v~ +~/~)/ht = ---:" D~ (6p), (24) 
(6v7 +' - -  6oT+2/Z)/At q- r-~Ds * (rO ~,~=, 8v7 +1) = 

= (Re r*)-XD, (rag~mom (8v7+I)), (25) 

v7 + ~ = 07 + ~v~ '+~, p"+' = p" + 6p, . /=  ] ,  2. (2 6 ) 

The scheme (21)-(26) is an extension of the difference scheme proposed in [8] to com- 
pute plane flows in arbitrary channels, to the axisymmetric swirling fluid flow case. Its 
main steps are the following. 

By using (21) values of the functions v n+z at the (n + l)-th time layer are determined 
by iteration from values given for the mesh functions v n, v n, v n and pn at the n-th time 
layer. Then the preliminary corrections 6v n+l/3 (j = i, 2) to the velocities are found from 
the explicit formulas (22). Furthermore, t~e field of corrections to the pressure dp is 
determined from (23) by iterations. New corrections to the velocities 6v9@=/s are deter- 
mined from (24) by a simple conversion, and the final corrections 6v9 +I ared found by itera- 
tion from (25). Finally, values of the velocities v~ +I (j = i, 2) a3nd pressure pn+1 are 
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calculated at the new (n + l)-th time layer by using (26). The process is repeated from the 
very beginning to obtain solutions steady-state in time. 

The implicit steps (21), (23), and (25) of the proposed algorithm are realized by using 
the splitting method. A sequence of steps in the relaxation time is used to accelerate the 
iteration process in the solution of (23). Splitting (21) and (25) is determined by the 
stream direction which permits especially effective investigation of a flow with recircula- 
tion zones [8]. The difference scheme used in this paper satisfies the test of a homogeneous 
stream, which is necessary in computing fluid flows in a curvilinear nonorthogonal coordinate 
system [9]. 

The finite-difference method described above underlies the program complex developed 
for computation of laminar incompressible viscous fluid flows in plane and axisymmetric 
channels of arbitrary configuration. Stream swirling is taken into account in the axi~ym- 
metric case. The flow domain boundaries can be given by oints, arcs of circles, or sediments 
of straight lines. Breakpoints in the body surface, baffles, stages, etc. are allowed here. 

Computations of swirling flows in axisradial diffusors of different configuration that 
are applied in modern turbines were performed by using the program complex. The stre~l Rey- 
nolds number, and the shape of the velocity component profile at the entrance to the channel 
were varied within a broad range. The program complex yields similar flow patterns for each 
of the computation modifications: stream lines, velocity and swirling velocity isoline~:, etc. 
The integral flow characteristics are also calculated. 

Streamlines in an axiradial diffuser whose boundaries are formed by arc and strai~ht 
line segments are represented in Fig. 2. Homogeneous longitudinal (U 0 = i) and circumferen- 
tial (W 0 = 0.5) velocity profiles are given at the channel entrance, there is not radial velo- 
city. The Reynolds number constructed along the entrance width is i000. As follows fzom 
the figure, a closed recirculation domain is formed at the channel inner surface (fairing) 
near the boundary breakpoint. Stream separation is observed at the outer surface of t~e diffu- 
sor near its exit. The circumferential velocity isolines corresponding to the motion case 
under consideration are presented in Fig. 3 with the step AW = 0.i. The intermediate 
dashed isolines are superposed with the step AW = 0.05. It can be noted that as the longitu- 
dinal coordinate increases dissipation of the swirling occurs. The circumferential velocity 
isolines are located close to the radial lines in the central part of the channel. 

Finally, let us consider an example of a fluid flow computation in a channel whose con- 
figuration is not in agreement with the boundary conditions at the entrance. Streamlinms 
in a truncated axiradial diffusor at whose entrance velocity component profiles that are 
almost real are given that correspond to exit conditions from the last stage of a turbi~ne 
are superposed in Fig. 4. The Reynolds number also equals i000. As follows from the figure, 
powerful stream separation emerging beyond the boundaries of the computational domain d~velops 
on the fairing surface. This circumstance significantly reduces the channel efficiency and 
indicates the necessity to profile it according to real velocity distribution at the en~;rance. 
The program complex described permits construction of channels optimal in its characteristics 
by the performance of several modifications of the computation. 

NOTATION 

Yl, Y2, Y3, Cartesian coordinates; z, r, ~ , are cylindrical coordinates; x I, x 2, x ~, 
curvilinear coordinates; ul, u2, u3, Cartesian velocity components; v~, v2, vs, v I, v 2, v ~, 
are co- and contravariant velocity components; U, V, W, axial, radial, and circumferential 
velocities; gks metric tensor components; t, time; p, pressure; Re, Reynolds number; At, 
time step; 6, function increment; and ~, stream function. 
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SUPER-MOLECULAR STRUCTURE OF DILUTE SOLUTIONS OF HIGH MOLECULAR WEIGHT 

POLYMERS WHICH LEAD TO REDUCED TURBULENT FRICTION 

V. N. Kalashnikov and M. G. Tsiklauri UDC 532.135:539.24:514.64 

Data are obtained which indicate a relationship between the viscoelastic properties 
of dilute solutions of high molecular weight polymers and their super-molecular 
network structures. The changes in structure are determined which result as the 
concentration and molecular weight of the polymer are increased. 

Dilute solutions of linear high molecular weight polymers with their unusual hydrodynamic 
and physical-chemical properties have long attracted the attention of investigators. The 
reduction of turbulent friction, increase of the resistance to filtration, the suppression 
of the breakup of jets, and the flocculating effect of extremely small polymer additions are 
all effects which have not only theoretical interest but also considerable applied value. 
The progress in understanding the special features of dilute polymer solutions is closely 
related to the developmentof modern concepts of the structural features of these liquids. 
However, it is precisely on this basic question that no unified opinion has been developed 
up to now. 

A point of view is widely encountered in polymer science according to which the polymer 
chains in dilute solutions are molecularly dispersed. In this sense a dilute solution is 
taken to mean a solution in which there is no overlapping of the macromolecular tangles, which 
in the case when the limit exists [~]o = ]im (~--~)/(c~), (which is termed the character- 

c~O, ~0  
istic viscosity) results in the condition c[~]0 < i being satisfied. Consistent experimental 
information exists in favor of the molecular dispersity of dilute solutions for polymeric 
materials with molecular weights M~I0 s. In this connection it is sufficient to recall the 
classical results of H. Staudinger and W. Carothers and other authors, who determined the 
molecular weights of polymers by basically different methods: chemical (titration of the end 
groups), and physical (cryoscopy, ebullioscopy, osmometry) [i]. These experiments led to 
comparable data, and indicated not only the existence of polymers with molecular weights ex- 
ceeding I0 ~, but also the molecular dispersity of these materials in solution. It was possible 
to advance these results by still another order of magnitude with respect to M after the de- 
velopment of the light-scattering method by Debye. The use of light scattering and osmometry 
for measuring the molecular weights of polymers reaching values as high as 105 led to the 
same numerical values, which inidcates, in particular, the correctness of the concepts of 
the molecular state of subdivision of such polymers in dilute solutions [2]. 

The successes in proving the separateness and discreteness of macromolecules with M~ 
105 in dilute solutions led to the unfounded confidence that this discreteness is retained 
for dilute solutions of macromolecules with larger molecular weights also, i.e., for the solu- 
tions for which the series of effects listed above are characteristic. In particular, this 
confidence is related to the attempts which have been made to explain many of the hydrodynamic 
features of the behavior of liquids with small polymeric additions on the basis of considering 
the interactions of single macromolecules with the flows. The point of view being discussed 
here has become particularly popular among theoreticians as a result of the tempting possi- 
bilities it provides for simplifying calculations. 
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